Modeling tumor phenotypes in vitro with three-dimensional bioprinting

The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting could improve in vitro models by incorporating multiple cell types into scaffold-free tumor tissues with defined architecture. We generated tumor tissues from distinct subtypes of breast or pancreatic cancer in relevant microenvironments and demonstrate that this technique can model patient-specific tumors by using primary patient tissue. We assess intrinsic, extrinsic, and spatial tumorigenic phenotypes in bioprinted tissues and find that cellular proliferation, extracellular matrix deposition, and cellular migration are altered in response to extrinsic signals or therapies. Together, this work demonstrates that multi-cell-type bioprinted tissues can recapitulate aspects of in vivo neoplastic tissues and provide a manipulable system for the interrogation of multiple tumorigenic endpoints in the context of distinct tumor microenvironments.

Bioprinted liver provides early insight into the role of Kupffer cells in TGF-β1 and methotrexate-induced fibrogenesis

Hepatic fibrosis develops from a series of complex interactions among resident and recruited cells making it a challenge to replicate using standard in vitro approaches. While studies have demonstrated the importance of macrophages in fibrogenesis, the role of Kupffer cells (KCs) in modulating the initial response remains elusive. Previous work demonstrated utility of 3D bioprinted liver to recapitulate basic fibrogenic features following treatment with fibrosis-associated agents. In the present study, culture conditions were modified to recapitulate a gradual accumulation of collagen within the tissues over an extended exposure time frame. Under these conditions, KCs were added to the model to examine their impact on the injury/fibrogenic response following cytokine and drug stimuli. A 28-day exposure to 10 ng/mL TGF-β1 and 0.209 μM methotrexate (MTX) resulted in sustained LDH release which was attenuated when KCs were incorporated in the model. Assessment of miR-122 confirmed early hepatocyte injury in response to TGF-β1 that appeared delayed in the presence of KCs, whereas MTX-induced increases in miR-122 were observed when KCs were incorporated in the model. Although the collagen responses were mild under the conditions tested to mimic early fibrotic injury, a global reduction in cytokines was observed in the KC-modified tissue model following treatment. Furthermore, gene expression profiling suggests KCs have a significant impact on baseline tissue function over time and an important modulatory role dependent on the context of injury. Although the number of differentially expressed genes across treatments was comparable, pathway enrichment suggests distinct, KC- and time-dependent changes in the transcriptome for each agent. As such, the incorporation of KCs and impact on baseline tissue homeostasis may be important in recapitulating temporal dynamics of the fibrogenic response to different agents.

Optimizing drug discovery by investigative toxicology: Current and future trends

Investigative Toxicology describes the de-risking and mechanistic elucidation of toxicities, supporting early safety decisions in the pharmaceutical industry. Recently, Investigative Toxicology has contributed to a shift in pharmaceutical toxicology, from a descriptive to an evidence-based, mechanistic discipline. This was triggered by high costs and low throughput of Good Laboratory Practice in vivo studies, and increasing demands for adhering to the 3R (Replacement, Reduction and Refinement) principles of animal welfare. Outside the boundaries of regulatory toxicology, Investigative Toxicology has the flexibility to embrace new technologies, enhancing translational steps from in silico, in vitro to in vivo mechanistic understanding to eventually predict human response. One major goal of Investigative Toxicology is improving preclinical decisions, which coincides with the concept of animal-free safety testing. Currently, compounds under preclinical development are being discarded due to the use of inappropriate animal models. Progress in Investigative Toxicology could lead to humanized in vitro test systems and the development of medicines less reliant on animal tests. To advance this field a group of 14 European-based leaders from the pharmaceutical industry founded the Investigative Toxicology Leaders Forum (ITLF), an open, non-exclusive and pre-competitive group that shares knowledge and experience. The ITLF collaborated with the Centre for Alternatives to Animal Testing Europe (CAAT-Europe) to organize an “Investigative Toxicology Think-Tank”, which aimed to enhance the interaction with experts from academia and regulatory bodies in the field. Summarizing the topics and discussion of the workshop, this article highlights Investigative Toxicology’s position by identifying key challenges and perspectives.

Tissue engineering by self-assembly and bio-printing of living cells

Biofabrication of living structures with desired topology and functionality requires the interdisciplinary effort of practitioners of the physical, life and engineering sciences. Such efforts are being undertaken in many laboratories around the world. Numerous approaches are pursued, such as those based on the use of natural or artificial scaffolds, decellularized cadaveric extracellular matrices and, most lately, bioprinting. To be successful in this endeavor, it is crucial to provide in vitro micro-environmental clues for the cells resembling those in the organism. Therefore, scaffolds, populated with differentiated cells or stem cells, of increasing complexity and sophistication are being fabricated. However, no matter how sophisticated scaffolds are, they can cause problems stemming from their degradation, eliciting immunogenic reactions and other a priori unforeseen complications. It is also being realized that ultimately the best approach might be to rely on the self-assembly and self-organizing properties of cells and tissues and the innate regenerative capability of the organism itself, not just simply prepare tissue and organ structures in vitro followed by their implantation. Here we briefly review the different strategies for the fabrication of three-dimensional biological structures, in particular bioprinting. We detail a fully biological, scaffoldless, print-based engineering approach that uses self-assembling multicellular units as bio-ink particles and employs early developmental morphogenetic principles, such as cell sorting and tissue fusion.

Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox functions

The human intestinal mucosa is a critical site for absorption, distribution, metabolism, and excretion (ADME)/Tox studies in drug development and is difficult to recapitulate in vitro. Using bioprinting, we generated three-dimensional (3D) intestinal tissue composed of human primary intestinal epithelial cells and myofibroblasts with architecture and function to model the native intestine. The 3D intestinal tissue demonstrates a polarized epithelium with tight junctions and specialized epithelial cell types and expresses functional and inducible CYP450 enzymes. The 3D intestinal tissues develop physiological barrier function, distinguish between high- and low-permeability compounds, and have functional P-gp and BCRP transporters. Biochemical and histological characterization demonstrate that 3D intestinal tissues can generate an injury response to compound-induced toxicity and inflammation. This model is compatible with existing preclinical assays and may be implemented as an additional bridge to clinical trials by enhancing safety and efficacy prediction in drug development.

3D bioengineered tissues: From advancements in in vitro safety to new horizons in disease modeling

Research aimed at more fully emulating human biology in vitro has rapidly progressed in recent years with advancements in 3D tissue engineering and microphysiological systems. The initial target of such systems has been directed towards drug and chemical safety assessment, with the goal of improving sensitivity and predictive capabilities. Here we discuss recent developments of in vitro organ culture systems, and their future applications in modeling human disease.

Bioprinted three dimensional human tissues for toxicology and disease modeling

The high rate of attrition among clinical-stage therapies, due largely to an inability to predict human toxicity and/or efficacy, underscores the need for in vitro models that better recapitulate in vivo human biology. In much the same way that additive manufacturing has revolutionized the production of solid objects, three-dimensional (3D) bioprinting is enabling the automated production of more architecturally and functionally accurate in vitro tissue culture models. Here, we provide an overview of the most commonly used bioprinting approaches and how they are being used to generate complex in vitro tissues for use in toxicology and disease modeling research.

3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing

Due to its exposure to high concentrations of xenobiotics, the kidney proximal tubule is a primary site of nephrotoxicity and resulting attrition in the drug development pipeline. Current preclinical methods using 2D cell cultures and animal models are unable to fully recapitulate clinical drug responses due to limited in vitro functional lifespan, or species-specific differences. Using Organovo’s proprietary 3D bioprinting platform, we have developed a fully cellular human in vitro model of the proximal tubule interstitial interface comprising renal fibroblasts, endothelial cells, and primary human renal proximal tubule epithelial cells to enable more accurate prediction of tissue-level clinical outcomes. Histological characterization demonstrated formation of extensive microvascular networks supported by endogenous extracellular matrix deposition. The epithelial cells of the 3D proximal tubule tissues demonstrated tight junction formation and expression of renal uptake and efflux transporters; the polarized localization and function of P-gp and SGLT2 were confirmed. Treatment of 3D proximal tubule tissues with the nephrotoxin cisplatin induced loss of tissue viability and epithelial cells in a dose-dependent fashion, and cimetidine rescued these effects, confirming the role of the OCT2 transporter in cisplatin-induced nephrotoxicity. The tissues also demonstrated a fibrotic response to TGFβ as assessed by an increase in gene expression associated with human fibrosis and histological verification of excess extracellular matrix deposition. Together, these results suggest that the bioprinted 3D proximal tubule model can serve as a test bed for the mechanistic assessment of human nephrotoxicity and the development of pathogenic states involving epithelial-interstitial interactions, making them an important adjunct to animal studies.

Modeling compound-induced fibrogenesis in vitro using three-dimensional bioprinted human liver tissues

Compound-induced liver injury leading to fibrosis remains a challenge for the development of an Adverse Outcome Pathway useful for human risk assessment. Latency to detection and lack of early, systematically detectable biomarkers make it difficult to characterize the dynamic and complex intercellular interactions that occur during progressive liver injury. Here, we demonstrate the utility of bioprinted tissue constructs comprising primary hepatocytes, hepatic stellate cells, and endothelial cells to model methotrexate- and thioacetamide-induced liver injury leading to fibrosis. Repeated, low-concentration exposure to these compounds enabled the detection and differentiation of multiple modes of liver injury, including hepatocellular damage, and progressive fibrogenesis characterized by the deposition and accumulation of fibrillar collagens in patterns analogous to those described in clinical samples obtained from patients with fibrotic liver injury. Transient cytokine production and upregulation of fibrosis-associated genes ACTA2 and COL1A1 mimics hallmark features of a classic wound-healing response. A surge in proinflammatory cytokines (eg, IL-8, IL-1β) during the early culture time period is followed by concentration- and treatment-dependent alterations in immunomodulatory and chemotactic cytokines such as IL-13, IL-6, and MCP-1. These combined data provide strong proof-of-concept that 3D bioprinted liver tissues can recapitulate drug-, chemical-, and TGF-β1-induced fibrogenesis at the cellular, molecular, and histological levels and underscore the value of the model for further exploration of compound-specific fibrogenic responses. This novel system will enable a more comprehensive characterization of key attributes unique to fibrogenic agents during the onset and progression of liver injury as well as mechanistic insights, thus improving compound risk assessment.

Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro

Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard preclinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4 μM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.