Publications

Corporate Headquarters

6275 Nancy Ridge Drive, Suite 110
San Diego, CA 92121
Tel: (858) 224-1000

Find Us On

Modeling tumor phenotypes in vitro with three-dimensional bioprinting

Langer EM, Allen-Petersen BL, King SM, Kendsersky ND, Turnidge MA, Kuziel GM, Riggers R, Samatham R, Amery TS, Jacques SL, Sheppard BC, Korkola JE, Muschler JL, Thibault G, Chang YH, Gray JW, Presnell SC, Nguyen DG and Sears RC
Cell Reports. 26(3):608-623.e6 | doi: 10.1016/j.celrep.2018.12.090

GO BACK

Publication Summary:

The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting could improve in vitro models by incorporating multiple cell types into scaffold-free tumor tissues with defined architecture. We generated tumor tissues from distinct subtypes of breast or pancreatic cancer in relevant microenvironments and demonstrate that this technique can model patient-specific tumors by using primary patient tissue. We assess intrinsic, extrinsic, and spatial tumorigenic phenotypes in bioprinted tissues and find that cellular proliferation, extracellular matrix deposition, and cellular migration are altered in response to extrinsic signals or therapies. Together, this work demonstrates that multi-cell-type bioprinted tissues can recapitulate aspects of in vivo neoplastic tissues and provide a manipulable system for the interrogation of multiple tumorigenic endpoints in the context of distinct tumor microenvironments.

View Publication  
Publication Thumbnail Image